
Extended Precision Multiplication using a

Message Passing Interface (MPI)*

Bill McDaniel1 and Evan Lemley2

1Department of Computer Science

University of Central Oklahoma

Edmond, OK 73034

billmcd@roesner.us

2Center for Research and Education in Interdisciplinary Computation

College of Mathematics and Science

University of Central Oklahoma

Edmond, OK 73034

elemley@uco.edu

Abstract

This tutorial describes the Trachtenberg System [trachtenberg] of
multiplication using a Message Passing Interface (MPI) [mpi40] running
on multiple processors. Multiplication on a single processor is given �rst,
then multiplication using multiple processors follows.

1 Single Processor Implementation

The essential logic of the non-MPI code is given as:

1. accept 2 strings (all digits)
2. make sure that they are the same length
3. convert from characters to numbers
4. do the multiplication

*Copyright©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or speci�c permission.

1

5. return the answer (as a string)

The original version of the multiplication routines were written as 2 func-
tions in C++, and is shown below.

Listing 1: This is the main multiplication routine

s t r i n g mult ip ly (s t r i n g a , s t r i n g b)
{

int j , k , l s , r s ;
s t r i n g ans = "" ;

// make the s t r i n g s equa l l eng th , j i c
while (a . s i z e () != b . s i z e ())

i f (a . s i z e () < b . s i z e ()) a = ' 0 '+a ; else b = ' 0 '+b ;

// conver t from charac t e r s to numbers so the
// mu l t i p l i c a t i o n s w i l l work c o r r e c t l y
int numdigits = a . s i z e () ;
for (int i =0; i<numdigits ; i++) { a [i]−= ' 0 ' ; b [i]−= ' 0 ' ; }

// do the mu l t i p l y − ' l s ' i s the p o s i t i o n o f the
// l e f t s i d e o f the group to be mu l t i p l i e d ,
// and ' rs ' i s the p o s i t i o n o f the r i g h t s i d e
l s = r s = numdigits −1;
int car ry=0;
do

{
for (k=l s , j=r s ; k<=rs ; k++,j−−) car ry += a [j]*b [k] ;
hand le_carr i e s (carry , ans) ;
i f (l s > 0) l s −−; else rs−−;

}
while (r s > −1);

// take care o f any ex t ra va l u e s in ' carry '

while (car ry) hand le_carr i e s (carry , ans) ;
return ans ;

}

Listing 2: The following function converts the rightmost digit to a character
and prepends it onto the answer then strips the rightmost digit

2

void hand le_carr i e s (long long int & carry , s t r i n g & ans)
{

ans = char (car ry%10+ ' 0 ') + ans ;
car ry /= 10 ;

}

Notes:

1. The variable ans will contain the product when the algorithm is �nished.
2. The handle_carries routine will pick o� the rightmost digit, convert it

to a character, then prepend it to the answer, creating the answer right
to left.

3. A machine readable version of the code can be found at www.roesner.us/ billmcd
4. There may be a question about the maximum value for carry. Testing

two 3000 digit numbers, we found that the maximum number for carry
is 269990, so over�ow is not a major concern.

This particular system for multiplication is not widely known, so, a speci�c
example is shown below in 1. The reader will note that the answer is created
in reverse order (right to left).

2 Multiple Processor Implementation

Converting the above algorithm over to run using multiple processors is fairly
straightforward. The approach used was to have one processor for each output
digit.

The objective of this implementation was to have the calculations for various
instances of t done at the same time, on di�erent processors.

The MPI version of this code was run on the Buddy supercomputer at
the University of Central Oklahoma. This resource was funded by a National
Science Foundation grant (OAC 1429702) and consists of 31 general purpose
nodes each with two ten-core Intel Xeon CPUs and 64 GB of RAM, and four
high-memory nodes (identical to the general purpose nodes except for RAM
size of 128 GB), and two GPU nodes each with one NVidia Tesla K-40 card.

Message Passing Interface (MPI) was introduced as a method of paralleliz-
ing code in 1994 and has continued to be one of the primary ways code is run
in parallel on high performance computing platforms.

The MPI functions that are used in the program are shown in 2. Default
values are used whenever possible.

3

Figure 1: Given two 4 digit numbers that are to be multiplied together, where
the digits are represented by letters, p is determined �rst, then o, then n, and
so on. The variable t is a temporary variable to hold intermediate values.

4

Figure 2: MPI functions used in the multiplication program

The program is basically divided into 3 parts.

1. if world_rank = 0 then send the endpoints of the various groups to each
processor and wait for the results to be returned.

2. if (world_rank > 0 && world_rank <= N ∗ 2− 1) then accept ls and
rs and do the multiplications.

3. if (world_rank = N ∗ 2) then take care of the leftmost digit.

A quick summary of the logic of the program follows:

� Get the number of processes

� Get the rank of the process

� Get the name of the processor

5

pseudocode for process 0

determine the value of the left side and the right side
send the appropriate values of ls and rs to each process

for (i=1; i <= N*2−1;i++)

send ls to process i
send rs to process i
send a value of 0 (carry) to process 0
if (ls > 0) ls−−; else rs−−;

receive the digits back (right to left)

for (i=1; i <= N*2; i++)

receive 1 digit
result [N*2−i]= digit;

print the result - skip leading zeros

pseudocode for processes = 1...N ∗ 2− 1

get ls and rs from ps 0
do the computations

for (k=ls, j=rs; k <= rs; k++,j−−) carry += a[j]*b[k];

read tcarry from the previous process then add tcarry to carry
pick o� the rightmost digit and send to ps 0
compute the new value for carry and send to the next process

carry = carry % 10
send carry to the next process

code for process N*2

get the carry from the previous process
send the carry to ps 0

Finalize the MPI environment

Since the number of processes required has to be determined before the
program starts, a shell script is used to determine some of the run time con-
stants.

Listing 3: bash script to determine number of processes and other run-time
constants before actual run begins

#!/ bin / bash
#
echo " en t e r i ng mult ip ly . sh"
u=$1
v=$2

6

i f [[$u && $v]]
then

determine the l e n g t h s o f the 2 parameters
lu=${#u}
l v=${#v}

se t lm to the l en g t h o f the l onger s t r i n g
i f [${ lu } −gt ${ lv }] ; then lm=$lu ; else lm=$lv ; f i

echo " −l ength o f the l ong e s t s t r i n g = "$lm

ca l c u l a t e the number o f t a s k s needed
p=$ ((lm*2+1))
echo " −number o f ta sk s "$p

echo " −compi l ing "
mpicc mult ip ly . c

e x i t on compi le time error
i f [$? != 0] ; then exit ; f i

echo "run the program"
mpirun −np $p "a . out" $u $v $lm

else

echo "usage : bash mult ip ly . sh number number"
f i

Students in a senior level parallel programming course (or related) could be
�rst asked to develop a single processor algorithm for Trachtenberg multipli-
cation, then asked to develop a multiprocessor version of the single-processor
code.

3 Acknowledgements

The code and scripts in this tutorial were developed and tested on the Buddy
Supercomputer at the University of Central Oklahoma, which was funded by
National Science Foundation grant, OAC-1429702.

7

